The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.
نویسندگان
چکیده
A network of three classes of proteins consisting of bHLH and MYB transcription factors, and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), act in concert to activate trichome initiation and patterning. Using YFP-TTG1 translational fusions, we show that TTG1 is expressed ubiquitously in Arabidopsis leaves and is preferentially localized in the nuclei of trichomes at all developmental stages. Using a conditional transgenic allele, we demonstrate that TTG1 directly targets the same genes as the bHLH protein GLABRA3 (GL3). In vivo binding of the R2R3-MYB protein GLABRA1 (GL1) to the promoters of GLABRA2 (GL2), TRANSPARENT TESTA GLABRA2 (TTG2), CAPRICE (CPC) and ENHANCER OF TRIPTYCHON AND CAPRICE1 (ETC1) establishes that these genes are major transcriptional targets for the TTG1-bHLH-MYB regulatory complex. By co-precipitation, we confirm that TTG1 associates with GL3 and GL1 in vivo, forming a complex. The loss of TTG1 and GL1 through mutation, affects the subcellular distribution of GL3. Using particle bombardment, we show that TTG1, GL3, GL1 and the homeodomain protein GL2 do not move between adjacent epidermal cells, while the R3-MYB, CPC, does move to neighboring cells. These data support a model for the TTG1 complex directly regulating activators and repressors and the movement of repressors to affect trichome patterning on the Arabidopsis leaf.
منابع مشابه
Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves.
Trichome initiation in Arabidopsis (Arabidopsis thaliana) is controlled by the TRANSPARENT TESTA GLABRA1 (TTG1) network that consists of R2R3- and R1-type MYB-related transcription factors, basic helix-loop-helix (bHLH) proteins, and the WD40 protein TTG1. An experimental method was designed to investigate the molecular mechanisms by which jasmonates, cytokinins, and gibberellins modulate Arabi...
متن کاملRegulation of cell fate determination in plants
Building a multicellular organism, like a plant, from a single cell requires the coordinated formation of different cell types in a spatiotemporal arrangement. How different cell types arise in appropriate places and at appropriate times is one of the most intensively investigated questions in modern plant biology. Using models such as trichome formation, root hair formation, and stomatal devel...
متن کاملBrassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases
In Arabidopsis, root hair and non-hair cell fates are determined by a MYB-bHLH-WD40 transcription factor complex and are regulated by many internal and environmental cues. Brassinosteroids play important roles in regulating root hair specification by unknown mechanisms. Here, we systematically examined root hair phenotypes in brassinosteroid-related mutants, and found that brassinosteroid signa...
متن کاملMYB82 functions in regulation of trichome development in Arabidopsis
Trichome initiation and patterning are controlled by the TTG1-bHLH-MYB regulatory complex. Several MYB transcription factors have been determined to function in trichome development via incorporation into this complex. This study examined the role of MYB82, an R2R3-MYB transcription factor, in Arabidopsis trichome development. MYB82 was revealed to be a nuclear-localized transcription activator...
متن کاملAnalysis of TTG1 and CPC-like MYB genes during Arabidopsis epidermal cell differentiation
The development of Arabidopsis thaliana epidermal cells includes the differentiation of trichomes and root hairs. The TRANSPARENT TESTA GLABRA 1 (TTG1) gene encodes a WD40 protein that induces trichome differentiation and reduces root hair formation in Arabidopsis. The CAPRICE (CPC) gene family includes CPC, ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), and CPC LIKE MYB3 (CP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 135 11 شماره
صفحات -
تاریخ انتشار 2008